
A novel system on chip for software-defined,
high-speed OFDM signal processing

Joachim Meyer∗, Michael Dreschmann∗, Djorn Karnick†, Philipp C. Schindler†,
Wolfgang Freude†, Juerg Leuthold†‡ and Jürgen Becker∗

∗Institute for Information Processing Technologies (ITIV), Karlsruhe Institute of Technology (KIT)
†Institute of Photonics and Quantum Electronics (IPQ), Karlsruhe Institute of Technology (KIT)

Email: {joachim.meyer, michael.dreschmann, djorn.karnick, philipp.schindler, wolfgang.freude, becker}@kit.edu
‡now at Electromagnetic Fields and Microwave Electronics Laboratory (IFH),

Swiss Federal Institute of Technology in Zurich (ETH), Email: leuthold@ethz.ch

Abstract—In this paper the authors describe a novel system
on chip (SoC) that is especially developed for digital signal
processing of high-speed orthogonal frequency division multiplex-
ing (OFDM) signals with data rates up to gigabits per second.
Besides offering a new degree of freedom for the tradeoff between
flexibility and performance during runtime, the modular concept
of the SoC also allows a tradeoff between performance and
costs during design time. The flexibility to adapt the OFDM
system parameters by software enables even system designers
without a good knowledge of hardware design to implement
high-speed OFDM systems. An example configuration of the
architecture was implemented on a Virtex-6 FPGA in order to set
up a software-defined OFDM transmitter, achieving data rates of
several gigabits per second. The paper closes with implementation
and performance results of experiments using the developed
transmitter and an optical transmission of the generated OFDM
signals.

Index Terms—SoC; MPSoC; FPGA; OFDM; high-speed; fibre

I. INTRODUCTION

Nowadays orthogonal frequency division multiplexing

(OFDM) is deployed in many of today’s communication

systems, especially in the wireless domain. However, in the

recent years OFDM has also become applicable in high-

speed optical communication systems, compare [1]. The rising

request for higher data rates caused by this development leads

to increasing requirements for the digital signal processing of

these applications. Until today, when targeting data rates of

one giga-sample per second and more, usually a dedicated

circuit implemented in an FPGA or in an ASIC is inevitable.

While taking performance to the limit, dedicated circuits

have two major drawbacks. On the one hand the development

of such circuits is very time consuming and costly, requiring

hardware design specialists. On the other hand, the parameters

of such circuits are tailored to one special application (e.g. FFT

size, compare [2]). This inflexibility inhibits the reuse of such

circuits for other applications and enforces a redesign, most

likely from scratch.

In order to tackle this problem, a multiprocessor system

on chip (MPSoC) was developed to enable a better trade-

off between performance, costs and flexibility. The implied

tradeoff between performance and flexibility which results

from the usage of multiple dedicated application processors is

supplemented by the tradeoff between performance and cost

(e.g. resources) when determine the number of implemented

application processors during design time. Once implemented,

due to the programmability of the SoC, hardware designers are

not needed anymore to build up high-speed OFDM systems.

The rest of the paper is organized as follows: Section II

presents related work. The next section explains the concept

of the SoC and introduces the developed processors. Section

IV describes the prototype transmitter implementation and

presents the results of the measurements. The last section,

section V, concludes this paper.

II. RELATED WORK

One method to achieve high data rates for OFDM systems is

the usage of modern digital signal processors (DSPs). By fea-

turing wide data busses and optimizations for signal processing

operations (e.g. multiply-accumulate) such devices achieve a

higher performance than general purpose processors, but still

offer very high flexibility since they are fully programmable.

Implementations as presented in [3] or [4] show how the

system parameters can be easily varied by exchanging the

assembler code. The price for this high flexibility is the rather

slow performance of usually several kilo-samples or at most

mega-samples per second.

The other extreme is given by dedicated circuit imple-

mentations as seen in [5] and [6], where sample rates up

to about 25 giga-samples per second were achieved, but

parameter variations are not possible at all. Such systems are

usually tailored to one specific application, taking advantage

of optimizations which are only valid in this specific scenario.

Therefore, even the slightest changes (e.g. different cyclic

prefix size) require major redesigns.

Recent SoC implementations which target OFDM commu-

nication (e.g. [7] or [8]) rather concentrate on power consump-

tion and integration than performance. Hence, the maximum

sample rates are in the range of several mega-samples per978-1-4799-1132-5/13/$31.00 c©2013 IEEE
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Fig. 1. On a high level, the developed system on chip can be divided in a
control system (CS) and a signal processing system (SPS), connected via an
asynchronous bus bridge.

second. To our knowledge there is no work available which is

qualifying for a detailed comparison with our novel MPSoC

by offering a similar tradeoff in performance and flexibility.

III. IMPLEMENTATION

The composition of the developed OFDM MPSoC is shown

in figure 1. On a high level, the architecture can be divided

into two subsystems, the control system (CS) and the signal

processing system (SPS). The two subsystems are connected

by an asynchronous bus bridge which is able to copy data

from the SPS into a bridge memory, directly accessible by the

CS, or vice versa. By doing this, the bus bridge also converts

the clock frequency and the bus width.

A. Control System (CS)

The control systems main tasks are to provide user inter-

faces, configure the processors of the SPS and to load the

SPS processors program code into their command memory. It

can optionally perform signal processing or data analyses by

accessing the data of the SPS using the bus bridge or react

on interrupts coming from any of the SPS processors (e.g.

replace a processors code with new commands). However, in

order to achieve high data rates, the signal processing should

be handled inside the SPS only.

The SPS processor configuration interfaces are implemented

as a 32-bit wide Advanced Microcontroller Bus Architecture

(AMBA) Advanced High-performance Bus (AHB) architec-

ture. Since the CS and SPS support different clocks, the

configuration interfaces as well as the bus bridge include clock

domain bridges. The only requirement to the CS system is to

support the AHB bus system to access these interfaces. Besides

that, any processor subsystem is applicable.

Figure 2 illustrates the CS-subsystem as used in our proto-

type. It mainly consists of components of the Gaisler Research

Library (GRLIB, see [9]) which is a collection of IP-cores

basing on a SPARC-V8 compatible processor, the Leon 3. We

chose this system because it is free for a non-commercial usage

and it offers comfortable programming and debugging features

like c-compilers and an eclipse plugin.
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Fig. 2. The main task of the control system is to keep the processors of the
SPS busy. Although for our prototype we choose a Leon-3 based system, in
general any processor subsystem can do the job.

B. Signal Processing System (SPS)

The signal processing subsystem, which is the actual mul-

tiprocessor system on chip, consists of several types of pro-

cessors connected by a 64-bit wide AHB bus system and by

a configurable interrupt bus. The system uses a 16-bit fixed

point numeric notation; therefore two complex samples can

be transported with one bus access. Each type of processor

takes care of a special task in the OFDM signal processing

chain. Figure 3 shows an example for an SPS in an OFDM

receiver, which is able to demodulate an OFDM signal in order

to compare the received data with a locally generated pseudo-

random bit stream sequence (PRBS).

To program an SPS processor, the CS system configures all

OFDM parameters of the processor and writes a sequence of

commands into the command memory. Most of the processors

have only one command type, consisting of the read address

and the write address of the operation. Besides stopping after

executing all commands, a processor can also operate in

different kind of loop modes. In those modes, a new iteration

of the commands is triggered at specific events, e.g. when

receiving an interrupt from another processor.

Almost all OFDM parameters of the processors in the SPS

can be configured by the CS, including but not limited to: FFT

size, modulation format of each subcarrier, number and posi-

tion of pilot tones, value of pilot tones, size of cyclic prefix,

delay widths, summation widths and different thresholds of

an extended version of the synchronization mechanism given

by [10], number of bits to be clipped or rounded, preamble,

number of preamble symbols and the number of data symbols.

1) SPS AHB Interconnect: The high-speed interconnect be-

tween the processors is one of the most important components.

We developed a 64-bit wide multiplexer based multilayer AHB

bus matrix similar to [11], using fix priorities for arbitration.

The amount of master ports and the amount of slave ports can

be set independently by the designer. With such a bus matrix,

many bus masters can perform parallel transmissions, compare

figure 4. Therefore, such an interconnect provides a very high

performance but also requires a high amount of resources.

2) OFDM Processors: There are several types of proces-

sors each of them is developed for one specific task, like

the calculation of a Fast Fourier Transform (FFT) or the
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Fig. 3. The Signal Processing System consists of several specialized
processors and several dual port Block RAM memories which are connected
by a 64-bit wide AHB bus system.
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Fig. 4. The 64-bit wide multiplexer based multilayer AHB bus matrix allows
parallel transactions in order to enable a full utilization of the SPS processors

mapping of binary data to the corresponding constellation

points of the actual modulation scheme. For configuration and

programming, all processors have an AHB slave interface.

One design aspect for all ordinary processors is to ensure

a constant data throughput of two samples per clock cycle.

Therefore, each of them is fully pipelined and most of them

have two master interfaces, one to fetch data, one to write

back the results. Table I of section IV lists all developed SPS

processors.

The (i)FFT processor type is an exception since this proces-

sors can only provide a throughput of two samples per clock

if the FFT size is smaller than 64. If it is bigger, either more

processors are needed in order to perform a joint calculation

of the transform or one processor needs to process the data

several times and therefore will have no constant throughput

of two samples per clock cycle anymore. When used in joint

mode, x processors can calculate FFTs with a maximum size

as given in equation 1.

Max. FFT size of x processors = 2(x×4+1) (1)

3) Dual Port Block RAM Memory: Another very critical

component for a high-speed OFDM signal processing sys-
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Fig. 5. This output data conversion module converts two 2-samples-per-clock
data streams into one 4-samples-per-clock data stream.

tem is the main memory. It is essential to provide enough

bandwidth for all processors working in parallel. To avoid a

very complex memory controller as well as for flexibility and

scalability reasons, we decided to use the on-chip memory

components of the FPGA (Block RAM) for this job.

Every of the dual port AHB Block RAM memories is 64-bit

wide and provides two AHB slave ports which allow a parallel

access of the memory content. The depth of one memory block

and the total amount of memory blocks is configurable during

design time of the SoC.

4) Data Converters: In order to be able to process more

than two samples in parallel, special modules are required

which convert one sequential stream of samples (e.g. one

OFDM frame) of a high sample rate into several chunks of

data (e.g. OFDM symbols) with a smaller sample rate, or vice

versa. The smaller chunks can then be processed in parallel

by multiple processors.

The mentioned conversion is done by using both ports of

several Block RAM primitives of the FPGA. The concept

is illustrated in figure 5 for a transmitter system which can

process four samples per clock cycle. Here, the output data

converter provides two 64-bit wide AHB slave interfaces to

the SPS which are used to write two OFDM Symbols (two

samples per symbol per clock cycle) in parallel into Block

RAM memories. Afterwards, the data is read from the second

ports of the Block RAMs, four Samples per clock cycle, one

OFDM symbol after another.

The data conversion module of a transmitter includes addi-

tional functionality like clipping, functionality to add a cyclic

prefix and an extra memory for an arbitrary preamble. The

receiver includes the data conversion module in the synchro-

nization processor. After timing synchronization to find the

start of the frame and frequency synchronization to keep

intersymbol interferences (ISI) low, the cyclic prefix of an

OFDM symbol is removed and the symbols can be partitioned

into several parallel data streams.
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Fig. 6. SPS of a four-stream transmitter design as used in the experiments. In order to trim the system for performance, it is possible to implement several
streams in parallel. In this case each stream generates OFDM symbols independently. The symbols are then concatenated by the output data converter. For
data other than a PRBS, an additional component would have to partition the data in order to assign it to the multiple streams.

C. Performance vs. Cost Tradeoff

The modular concept of the MPSoC allows a tradeoff

between the maximum performance and the resource con-

sumption (performance vs. cost) of the system during design

time. An example for optimizing the system for resources

(cost) would be to include only (i)FFT processors, the output

data converter and a synchronization module in the SPS. All

calculation would be executed by the CS processor, except

for the (i)FFT which would be outsourced to the SPS, highly

increasing the performance when compared to a processing

solely by the CS processor. By using the output data converter

and the synchronization module, the system would still be able

to send and receive OFDM Frames (e.g. bursts) with a high

sample rate, but not continuously.

The other extreme, a complete optimization for perfor-

mance, can be seen in figure 6. All OFDM processing in this

transmitter takes place in the SPS. The SPS consists of several

streams which each include all the necessary processors and

memories to run constantly, processing two samples per clock.

Each stream operates independent of each other, using an

own bus matrix. The CS processor programs all the SPS

processors one time, afterwards they will run autonomously,

executing their program whenever they receive an interrupt

from the preceding processor of the processing chain. This

system configuration will allow sending one OFDM frame

after another. Due to clarity the illustration in figure 6 does

neither show the configuration interface nor additional logic

like e.g. the bus bridge or analog interface to the digital to

analog converters.

IV. EXPERIMENTS AND RESULTS

A. System Configuration

In order to verify the functionality of the MPSoC we

set up a transmitter experiment using a four-stream system

configuration as illustrated in figure 6. With a SPS clock

frequency of 125 MHz such an OFDM transmitter is able

to generate continuous OFDM signals at one giga-sample

per second. The CS is operating at 75 MHz and consists of

Standard IP-cores from Gaisler Research [9], as seen in figure

2. The information sent was a pseudorandom binary sequence

(PRBS) generated inside the MPSoC.

Each SPS stream consists of a PRBS generator, a modula-

tion processor and two (i)FFT processors supporting (i)FFT

sizes up to 512 subcarriers when working in joint mode. The

output data converter is implemented only once but provides

every stream with an own 64-bit wide AHB slave interface.

The resource consumption for single modules as well as for the

complete system is included in table I. Most processors vary in

their resource consumption depending on several parameters

the designer has to set at design time, e.g. size of memories,

maximum size of preamble or maximum size of (i)FFT. The

values in table I are valid for the standard settings we used

for our four-stream transmitter design.

When comparing the resource consumption it gets obvious

that a receiver system consumes a lot more resources due to

the high resource consumption of processors which are only

needed for receiver side algorithms (e.g. synchronization or

equalization). However, keep in mind that there is only one

synchronization processor needed whose resource consump-

tion is increasing with the amount of parallel streams. The

values of table table I is for a configuration with four streams.

To get normalized values the values for the synchronization

module should be divided by four.

B. Experimental Setup

We used a Xilinx Virtex-6 HXT 40G/100G Develop-

ment Platform from Hitech Global deploying a Xilinx

XC6V380HXT FPGA for a prototype transmitter design. The

FPGA was connected to two 12-bit MAX5881 digital to

analog converters (DACs) from Maxim. To assess the quality

of the OFDM baseband signal, the in-phase and quadrature-



TABLE I
RESOURCE CONSUMPTION

Module LUTs Registers BRAMs DSPs

Processors

PRBS Generator 591 529 0 0

Modulation 1 833 984 3 0

(i)FFT 4 610 3 344 14 20

O. Data Converter1 2 266 1 409 40 0

Synchronization1 49 051 39 460 320 54

Equalizer 20 608 18 099 10 60

Demodulation 813 759 1 0

PRBS Checker 570 412 0 0

Other Modules

Busmatrix 8 x 7 2 804 952 0 0

DP BRAM Mem. 16 16 4 0

AHB2AHB Bridge 608 327 2 0

Control System 17 175 13 631 28 4

Complete Designs

1 Gsps Transmitter 91 524 71 921 316 165

1 Gsps Receiver 205 389 173 239 640 459

1 configured for 4 parallel streams

FPGA
DAC

DAC

Fig. 7. To assess the OFDM baseband signal quality, the initial experimental
setup recorded directly the outputs of the DACs. Afterwards, the signal was
processed with Matlab.

phase component were recorded directly at the output of

the DACs with an 80 giga-samples per second, real-time

oscilloscope. The schematic of the initial experimental setup

is illustrated in figure 7.

For this initial test we used an OFDM configuration with a

128-point inverse FFT to generate an OFDM-signal with 108

data carriers, 8 pilot tones and a cyclic prefix of 16 samples.

One OFDM frame consisted of 244 data symbols and a 1312

sample preamble. For QPSK modulation of the subcarriers the

resulting data rate was 1.44 gigabits per second while it was

2.88 gigabits per second for 16-QAM modulation.

The experimental setup for an optical transmission in a

second experiment is depicted in figure 8. The baseband signal

from the DAC outputs was up-converted to an electrical in-

termediate frequency by an analogue IQ-mixer. Subsequently

the intensity of a semiconductor laser diode with a 3 dB-

bandwidth of 16 GHz was modulated by a current carrying

the passband signal.

The optical signal was detected by a photodiode. The mod-

ulated photocurrent was amplified and recorded with the real-

time oscilloscope for offline demodulation. The transmitted

signal consisted of 48 modulated subcarriers and 4 pilot tones

FPGA
DAC

DAC

Bias LD PD RF-Amp Scope

Upconversion

Fig. 8. The second experimental setup implemented the transmitter system
in an optical OFDM communication setup. After mixing the generated signal
on an intermediate frequency, it was used to directly modulate a laser. The
receiver based on a photo diode and the similar offline processing as before.
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Fig. 9. Results of experiment one, recording directly the outputs of the
Digital-to-Analog converters. On top is the electrical spectrum of the 128
subcarrier system. It is easy to identify the unmodulated outer carriers and the
8 pilot tones. The picture at the left bottom shows the constellation diagram for
a QPSK configuration, the right bottom side is for a 16-QAM configuration.

generated by a 64-point iFFT. The number of OFDM-symbols

per frame was 448 and the preamble had a size of 800 samples.

Here the resulting data rates were 1.17 gigabits per second

(QPSK) and 2.35 gigabits per second (16-QAM), respectively.

The signal quality was evaluated by means of the error vector

magnitude normalized to the longest ideal constellation vector

(EVMm), see [12].

C. Results

Figure 9 shows the electrical spectrum as well as the

constellation diagrams of the measured baseband signal of
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Fig. 10. The results above derive from the optical OFDM experiments with
a 64 subcarriers configuration using 4 pilot tones. The electrical spectrum is
on top, the constellation diagram on the left bottom side is for QPSK, the
one on the right bottom side for 16-QAM.

the DAC outputs for the QPSK and 16-QAM configuration.

At the DAC sample rate of 1 giga-sample per second the

maximum signal bandwidth is 1 gigahertz. However, the outer

5 to 6 subcarriers remained unmodulated, thus narrowing the

bandwidth. The EVMm of the signal was 3.8% for the QPSK

configuration and 5.1% using 16-QAM modulation.

Figure 10 shows the electrical spectrum and constellation

diagrams of the optically transmitted signal showing a success-

ful reception and demodulation. Due to the smaller number

of subcarriers, the individual pilot tones are more distinct.

The EVMm of the received signal with QPSK-modulated

subcarriers was 10.7% while it was 8.4% for the 16-QAM

configuration. Both values remain well below the threshold

values for error-free reception [12].

V. CONCLUSION

With the new system the authors introduce an OFDM

transceiver framework which enables a new tradeoff between

flexibility and performance. Due to the possibility of changing

all the important OFDM parameters easily by software, a

transceiver using this architecture can be deployed in many

different OFDM applications and therefore offers a high

reusability, almost similar to a digital signal processor based

solution. At the same time the system is able to provide data

rates of several gigabits per second, a performance which pre-

viously was reserved for customized dedicated circuit designs

only.

Furthermore, due to its modular concept following industry

standards, the novel transceiver system enables system de-

signers to cover an even wider range of OFDM applications

by allowing a tradeoff between performance and cost during

design time. By following industry standards, the effort for

custom extensions is reduced as well.

The developed system demonstrates how powerful a modern

specialized multiprocessor system on chip can be. Even system

designers with no knowledge of hardware design can set up

a wide range of high speed OFDM systems using a high-

level programming language. Depending on the configuration

and the number of processors, the proposed transceiver system

achieves data rates of several gigabits per second. To our

knowledge, this architecture is the fastest software-defined
OFDM transceiver system to date.
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